题目: Stabilized Integrating Factor Runge-Kutta Method and Unconditional Preservation of Maximum Bound Principle
时间:2021年12月6日上午10:00-11:30
腾讯会议:823 571 192
Abstract:
Maximum bound principle (MBP) is an important property for a large class of semilinear parabolic equations, in the sense that their solution preserves for all time a uniform pointwise bound in absolute value imposed by the initial and boundary conditions. It has been a challenging problem on how to design unconditionally MBP-preserving time stepping schemes for these equations, especially the ones with order greater than one. We combine the integrating factor Runge-Kutta (IFRK) method with the linear stabilization technique to develop a stabilized IFRK (sIFRK) method, and successfully derive the sufficient conditions for the proposed method to preserve MBP unconditionally in the discrete setting. We then elaborate some sIFRK schemes with up to the third order accuracy, which are proven to be unconditionally MBP-preserving by verifying these conditions. In addition, it is shown that many strong stability preserving sIFRK (SSP-sIFRK) schemes do not satisfy these conditions, except the first-order one. Various numerical experiments are also carried out to demonstrate the performance of the proposed method.
简介:鞠立力教授1995年毕业于武汉大学数学系获数学学士学位,1998年在中国科学院计算数学与科学工程计算研究所获得计算数学硕士学位,2002年在美国爱荷华州立大学获得应用数学博士学位。2002-2004年在美国明尼苏达大学数学与应用研究所从事博士后研究。随后进入美国南卡罗莱纳大学工作,历任数学系助理教授(2004-2008),副教授(2008-2012),和教授(2013-现在)。主要从事偏微分方程数值方法与分析,非局部模型与算法,计算机视觉,深度学习,高性能科学计算,及其在材料与地球科学中的应用等方面的研究工作。至今已发表科研论文120多篇,Google学术引用近四千次。自2006年起连续主持了十多项由美国国家科学基金会(NSF)和美国能源部(DOE)资助的科研项目。美国工业与应用数学学会(SIAM)成员,2008-2009年期间担任其东南大西洋分会主席。2012至2017年担任国际计算数学领域重要学术期刊SIAM Journal on Numerical Analysis的副编辑,目前是NMPDE, NMTMA, AAMM等多个期刊的编委会成员。与合作者关于合金微结构演化在“神威·太湖之光”超级计算机上的相场模拟工作入围2016年国际高性能计算应用领域“戈登·贝尔”奖提名。